Как в numpy изменить массив?

Пользователь

от velma , в категории: Python , 2 месяца назад

Как в numpy изменить массив?

Facebook Vk Ok Twitter LinkedIn Telegram Whatsapp

1 ответ

Пользователь

от elissa , 2 месяца назад

@velma 

В библиотеке NumPy можно изменить массив, используя различные методы и функции. Вот некоторые из них:

  1. Изменение размера массива: reshape: изменяет размерность массива без изменения его данных. resize: изменяет размерность массива и изменяет его данные при необходимости.


Пример:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
import numpy as np

arr = np.arange(9)
print(arr)   # [0 1 2 3 4 5 6 7 8]

new_arr = arr.reshape((3, 3))
print(new_arr)
"""
[[0 1 2]
 [3 4 5]
 [6 7 8]]
"""

arr.resize((2, 6))
print(arr)
"""
[[0 1 2 3 4 5]
 [6 7 8 0 0 0]]
"""


  1. Изменение значений в массиве: Индексирование: можно изменить значения конкретных элементов массива, используя индексы. Блочное присваивание: можно изменить значения нескольких элементов массива сразу.


Пример:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
import numpy as np

arr = np.arange(5)
print(arr)   # [0 1 2 3 4]

arr[2] = 10
print(arr)   # [ 0  1 10  3  4]

arr[1:4] = 20
print(arr)   # [ 0 20 20 20  4]


  1. Изменение типа массива: astype: создает новый массив с измененным типом данных.


Пример:

1
2
3
4
5
6
7
8
9
import numpy as np

arr = np.array([1, 2, 3], dtype=np.int32)
print(arr)                    # [1 2 3]
print(arr.dtype)              # int32

arr_float = arr.astype(np.float32)
print(arr_float)              # [1. 2. 3.]
print(arr_float.dtype)        # float32


Это только некоторые из способов изменения массивов в NumPy. Более подробную информацию вы можете найти в документации NumPy.